Molecular Structure of [Bis-(2-pyridyl)disulphide]copper(1) Perchlorate Showing the N₃S Co-ordination of Copper(1)

By MAVIS M. KADOOKA, LARRY G. WARNER, and KARL SEFF* (Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822)

Summary In its bis-(2-pyridyl)disulphide complex, Cu^{I} has $N_{3}S$ co-ordination, similar to that expected for Cu^{I} -disulphide complexes in oxidases such as caeruloplasmin, rather than $N_{2}S_{2}$ or N_{4} co-ordination.

DISULPHIDE linkages co-ordinated to readily reducible or oxidizable metal ions may constitute polynuclear two-ormore-electron redox sites with unusual potentials; such structures may be utilized by some metalloenzymes.¹ In the oxidized form (the resting state) of the copper oxidase

FIGURE 1 The structure of the $[Cu(C_{10}H_8N_2S_3)_2]^+$ ion. Ellipsoids of 15% probability are used.⁹

caeruloplasmin, e.s.r.-inactive copper has been reported² to be Cu^I with two Cu^I ions co-ordinated to one organic disulphide group. The several Cu^I complexes of organic disulphides which have been studied crystallographically show either Cl₂S₂ co-ordination,³ or N₂S₂^{4,5} co-ordination about tetrahedral Cu^I. In a protein, it is reasonable to expect, if the Cu^I site is to survive many cycles of disulphide reduction-oxidation, that Cu^I should co-ordinate to not more than one disulphide group, and that its other three ligands should be nitrogen or oxygen. We now report the molecular structure of [bis-(2-pyridyl)disulphide]copper(I) perchlorate, [CuL₂]ClO₄, in which N₃S co-ordination has been specifically selected by Cu^I.

Crystal data: $C_{20}H_{16}N_4S_4ClO_4Cu$, M = 603.6, triclinic, a = 13.898(12), b = 21.867(16), c = 8.278(4) Å, $\alpha = 92.78(5)$, $\beta = 100.79(6)$, $\gamma = 84.37(6)^\circ$, space group PI, Z = 4, $D_m = 1.666$, $D_c = 1.643$, R = 0.051 for 3079 reflections with $I > 3\sigma(I)$.

Intensity data were collected on a four-circle computercontrolled diffractometer with graphite-monochromated Mo- K_{α} radiation ($\overline{\lambda} = 0.71073$) at 22–23 °C. Absorption and decay corrections were applied. The structure was solved using Patterson methods, and refined using anisotropic thermal parameters for all non-hydrogen atoms. Hydrogens were included at calculated positions.

The structure contains both isolated monomeric complexes of CuL_2^+ , as shown in Figure 1, and the polymeric complex, $\operatorname{Cu}_n L_{2n}^{n+}$, shown in Figure 2. In each case, $\operatorname{Cu}^{\mathrm{I}}$ is tetrahedrally co-ordinated by two ligands. One coordinates through its two pyridyl nitrogen atoms to $\operatorname{Cu}^{\mathrm{I}}$, forming a seven-membered (SCNCuNCS) chelate ring in the monomer and a bridge between two Cu^I ions in the polymer; the disulphide group does not participate in co-ordination. In the other ligand, it is one pyridyl group which is excluded from co-ordination. The remaining pyridyl nitrogen and one sulphur atom of the disulphide group co-ordinate in both the monomeric and polymeric species, forming five membered (SCuNCS) chelate rings. Either ligand could have co-ordinated like the other to give symmetric N_4 or N_2S_2 co-ordination about Cu^I , but this has not occurred, presumably because these co-ordination geometries are not preferred by CuI for these particular donor atoms and

FIGURE 2 Partial structure of the polymeric complex, [Cun- $(C_{10}H_8N_2S_2)_{2n}]^{n+}$. The bridging ligand has been blackened in this figure. Ellipsoids of 15% probability are used.⁹

potential chelate rings. Thus CuI has demonstrated a preference for N_aS co-ordination both in the monomer and the polymer, justifying one aspect of the proposed CuI co-ordination in caeruloplasmin.

The disulphide bonds [2.032(4), 2.047(5), 2.025(4)] and 2.026(4) Å] average 2.032(2) Å, which is slightly longer than the value of 2.016(2) Å found in the uncomplexed ligand.⁶ The longest S-S bond is in the 7-membered chelate ring and the C-C-S-S and N-C-S-S torsion angles associated with it are uniquely far from 0° or 180°. The C-S-S-C torsion angles range from 81.1 to 93.3°, near to the expected value7 of 90°. Like the previously reported structures of aliphatic disulphide complexes of CuI,^{4,5} a significant lengthening of the disulphide bond is observed when bis(2-pyridyl) disulphide complexes to CuI, although it does not appear to depend upon whether a sulphur atom of the disulphide group participates in co-ordination.

The average Cu^L-S and Cu^L-N bond lengths are 2.418(2) and 2.024(5) Å, respectively. The average CuLS bond distance is approximately equal to the sum of the tetrahedral covalent radii⁸ of Cu^I and S, and is about 0.1 Å longer than the average CuI-S distances found in cyclo-di-µ-{bis-[2-(NN-dimethylamino)ethyl]disulphide }dicopper(I) tetrafluoroborate⁴ and {bis-[2-(2-pyridyl)ethyl]disulphide}copper(I) perchlorate,⁵ indicating a weaker Cu^LS interaction. The relatively short CuLN bond lengths are consistent with possible metal to $N\pi$ -backbonding, which is typical of CuI to unsaturated N-complexes, and are nearly the same as those in the CuI complex of bis-[2-(2-pyridyl)ethyl]disulphide.⁵ The angles at Cu^I range from 90° to 119° in the monomeric complex, and from 88° to 138° in the polymer.

We thank the National Institutes of Health for support and the University of Hawaii Computing Center for its assistance.

(Received, 16th September 1975; Com. 1058.)

¹ P. Hemmerich in 'The Biochemistry of Copper,' eds. J. Peisach, P. Aisen, and W. E. Blumberg, Academic Press, New York, 1966, p. 15.

^{10.}
² W. Byers, G. Curzon, K. Garbett, B. E. Speyer, S. N. Young, and R. J. P. Williams, *Biochim. Biophys. Acta*, 1973, 310, 38.
⁸ C.-I. Bränden, *Acta Chem. Scand.*, 1967, 21, 1000.
⁴ T. Ottersen, L. G. Warner, and K. Seff, *J.C.S. Chem. Comm.*, 1973, 876; *Inorg. Chem.*, 1974, 13, 2819.
⁵ L. G. Warner, T. Ottersen, and K. Seff, *Inorg. Chem.*, 1974, 13, 1904.

⁶ Unpublished data.

- ⁷ A. Hordvik, Acta Chem. Scand., 1966, 20, 1885. ⁸ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960, p. 260.

⁹C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1965.